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Excitation energy transfer in condensed media
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We derive an expression for resonance energy transfer between a pair of chromophores embedded
in a condensed medium by considering the energy splitting of the chromophores from their resonant
excited states. We employ time-dependent density functional response theory in our derivation. The
linear response theory treatment is rigorous within the framework of time-dependent density
functional theory, while in obtaining the energy transfer coupling, the standard first-order
approximation is used. The density response function for the medium, which can be replaced by the
macroscopic dielectric susceptibility, enables the inclusion of the medium influence on the energy
transfer coupling between the donor and acceptor. We consider the Coulomb coupling, and
determine that our result is isomorphic to the Coulomb interaction between two charge densities
inside a dielectric medium. The isomorphism we found not only provides a general and useful
expression for applications, but additionally offers a basis for the extension of the dielectric
response model to energy transfer coupling, which has been implicitly used earlier. An illustrative
model shows that for two separated molecules, the medium adds a dielectric screening effect to the
Coulomb coupling of their transitions. However, if the two molecules are so closely spaced that they
effectively reside in a single cavity, the medium can enhance or reduce the strength of the coupling
depending on the orientation and the alignment of the two chromophores. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1338531#
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I. INTRODUCTION

Electronic excitation energy transfer~EET! is a process
in which the excitation energy of one chromophore is pas
to another through an interaction between the two. EET is
fundamental importance in keeping and utilizing the ene
of absorbed photons. The best illustrative example of
process is the photosynthetic light harvesting event, in wh
200–300 molecules serve as solar collectors whose func
is to transfer excitation energy to the reaction center wh
charge separation occurs. Most, but not all,1–3 of the theoret-
ical studies of such systems model the pigments in vacu
without considering any influence of the surrounding m
dium. This is not because the effects of the medium on E
are known to be minor, but rather due to the lack of comp
hensive and yet solvable expressions for such applicati
The present work develops such an expression in the fra
work of time-dependent density response theory, which w
help us to understand the role of the surrounding solven
medium ~e.g., the protein matrix in the case of photosy
thetic light harvesting! in the EET process.

a!Electronic mail: grfleming@lbl.gov
3060021-9606/2001/114(7)/3065/8/$18.00
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Energy transfer coupling is traditionally described
two different mechanisms: Fo¨rster dipole–dipole coupling
and the Dexter exchange coupling.4,5 The former has anR26

distance dependence and the latter has an exponential de
dence. The limit of Fo¨rster theory and its generalization hav
often been discussed~in Refs. 3 and 6–10, for example!. The
dipole–dipole coupling scheme is not a good approximat
for chromophores that are closely spaced in a protein ma
or other media, or when one~or both! of the transitions in-
volved is dipole forbidden. The overall Coulomb interactio
between the two transition densities must be calculated
plicitly in these cases, and this seems to provide a satis
tory description of the systems studied.7–9 However, it is
often assumed in such calculations that the donor and ac
tor chromophores are in vacuum, and thus the role of
surrounding medium~protein matrix! in EET is not clear.

EET has been treated with a classical formulation
situations in which planar dielectric interfaces a
nearby.11–13Chanceet al.11,12 treated the transition dipole a
a harmonic oscillating dipole with damping~to properly ac-
count for the lifetime!. In this case, the dielectric medium
interacts with the oscillating transition dipoles, and the
5 © 2001 American Institute of Physics

t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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fects of the medium are described using classical dielec
theory.

Quantum electrodynamics~QED! theory offers another
means by which to describe EET with the inclusion of t
medium influence. The Hamiltonian for the interaction b
tween the transition dipoles and the quantized displacem
field can be properly written within QED, and dipole–dipo
resonant energy transfer can be derived from fi
principles.14–19 Juzeliūnas and Andrews14,15 used this ap-
proach to consider transition dipoles embedded in a die
tric medium. The result in the near-zone limit~where mol-
ecules are separated by a much smaller distance than
wavelength of the photon! is essentially Fo¨rster’s dipole–
dipole coupling scaled by a prefactor. This prefactor cons
of a screening contribution (e r

21), multiplied by the square
of the local field factor$@(e r12)/3#2%, wheree r is the opti-
cal dielectric constant of the medium. The prefactor is
fined in this way regardless of the orientation and alignm
of the two transition dipoles. Agranovich and Galanin o
tained the same prefactor in 1982 from basically the sa
considerations in a classical theory.13 Effects due to higher
transition multipoles have also been treated within the Q
framework.16 These works assumed that the chromopho
were small and could therefore be treated as point source
multipoles embedded in a dielectric medium. QED was a
recently applied to dipole–dipole energy transfer coupl
and van der Waals interaction near one or two planar die
tric interfaces.17–19The authors found that, depending on t
orientation and molecular alignment, the interaction co
either be enhanced or suppressed from that of interactio
free space. However, the complexity of the boundary-va
problem in this approach has made further investigation
more general cases~different geometries! rather challenging.

The classical theory and QED near-zone limit a
proaches are similar in that the effect of the surround
medium on the energy transfer coupling is equivalent to
interaction energy between the two oscillating dipoles me
ated by a dielectric description of the surrounding matr
Since the classical theory approach starts by describing
transition dipoles~densities! as oscillating dipoles~densi-
ties!, it is reasonable to wonder if the same method wo
hold for a quantum mechanical description of the transitio
Limited by technical complexity, the QED approach does
provide such a solution generally.

We have developed a general theory for resonant en
transfer coupling without explicitly treating the transition d
pole moments as oscillating dipoles. We obtain the EET c
pling for a pair of chromophores with resonant excited sta
by finding the energy splitting when the interaction is turn
on, using time-dependent density functional theo
~TDDFT!.20–23 TDDFT is a formally exact theory within
nonrelativistic quantum mechanics and it allows us to inc
porate the effect of the surrounding medium without a
additional assumptions. Our result corresponds to the n
zone limit of the QED result, and is not limited to the dipo
approximation for transition densities. Moreover, since
do not explicitly use a multipole expansion in the pres
work, and the need for specific boundary conditions is
Downloaded 04 Apr 2001 to 128.32.113.135. Redistribution subjec
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necessary in the formulation, the general expression we
tain should be useful in a variety of applications.

II. EXCITATION ENERGIES IN TIME-DEPENDENT
DENSITY-FUNCTIONAL THEORY

One useful application of TDDFT is to calculate the e
citation energies of a system by solving for the poles of
density response function~susceptibility!.22,24 This approach
is formally exact except for the use of approximate tim
dependent exchange-correlation functionals in the calc
tion. The TDDFT linear density responsedr (1)(r ,t) @i.e.,
first order changes to the diagonal elements of density ma
r(r ,r 8,t) of the electrons# to the perturbationv(r ,t) is given
by24

dr~1!~r ,t !5E dt8E d3r 8x~r ,t,r 8,t8!v~r 8,t8!, ~1!

where x(r ,t,r 8,t8) is the response function of the system
Using the particle–hole and hole–particle transitions~in the
Kohn–Shamnoninteractingreference system! as a basis, one
can write the matrix equation equivalent to Eq.~1! within the
frequency domain:22

H FA~v! B~v!

B~v! A~v!
G2vF1 0

0 21G J F dr~1!~v!

dr~1!* ~v!G5Fdv~v!

dv~v!G , ~2!

where

Aiaa, jbb5dabd i j dab„eaa2e ia)2Kiaa, jbb~v!, ~3!

Biaa, jbb52Kiaa, jbb~v!, ~4!

andKiaa, jbb(v) is the Fourier transform to (t2t8),

Kiaa, jbb~ t,t8!5E drE dr 8f ia* ~r !faa~r !

3S 1

ur2r 8u
1gXC~r ,t;r 8,t8! D

3f j b~r 8!fbb* ~r 8!, ~5!

where$f is ,fas% are the Kohn–Sham molecular orbitals
the system,~indices i , j ,..., areused for occupied orbitals
a,b,..., are forvirtual orbitals, while Greek letters indicat
spin states!, and gXC(r ,t;r 8,t8) is the exchange-correlatio
kernel:

gXC~r ,t;r 8,t8!5
d2AXC@r#

dra~r ,t !drb~r 8,t8!
. ~6!

The terms inside the curly braces in Eq.~2! constitute
the matrix representation ofx21(r,r 8,v), the inverse of the
density–density response functionx(r,r 8,v). One can show
with the time-dependent Schro¨dinger equation that the re
sponse functionx has poles at the excitation frequencies.22 In
application we simply solve for the frequencies that lead
zero in the inverse response functionx21 of the system, i.e.,
solve the following non-Hermitian eigenvalue problem:

S A~v! B~v!

B~v! A~v!
D S X

YD5vS 1 0

0 21D S X
YD , ~7!
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where X and Y are vectors representing the change in
density matrixdr (1). The solution to Eq.~7! is a set of
eigenvalues and eigenvectors. The eigenvalues are the
tation frequencies and the eigenvectors describe, to firs
der, the transition density of this excitation. The adiaba
approximation is often used in application,~in Refs. 22 and
25, for example!, which ignores the memory in the respon
of electrons. The matricesA andB are no longer functions o
v within the adiabatic approximation. Our result doesnot
rely on such an approximation. However, for simplicity
notation we drop explicit dependence onv in the following
derivation.

III. EXCITATION ENERGY TRANSFER IN VACUUM

We require an expression for energy transfer coupling
the framework of TDDFT, so let us consider a pair of don
~D! and acceptor~A! molecules having resonant excitatio
frequencies when there is no interaction between them. T
condition can be fulfilled by the high density of nucle
states created by intra- or intermolecular vibrations in eit
condensed phase systems or systems of large molecul
the gas phase. We can adapt the Condon approximatio
separate such nuclear coordinates from our electronic
grees of freedom.

The coupling strength between two such resonant st
is half of the energy splitting when the interaction betwe
the two molecules is turned on. We rewrite Eq.~7!, for sim-
plicity of notation, as

AX5vIX, ~8!

where

A5S A B

B AD ; X5S X
YD ; I5S 1 0

0 21D . ~9!

The orbitals ofA generally overlap with those ofD and the
overlap matrix is denoted asSDA . Equation ~8! then be-
comes

S ADD ADA

AAD AAA
D S XD

XA
D5vS I SDA

SAD I D S XD

XA
D . ~10!

Consider a pair of transitions, one forD ~transition frequency
v0 , with eigenvectorXD) and the other forA (v0 ,XA), that
are resonant in excitation energy when the two molecules
isolated. The transition frequencies when the interaction
tween the two molecules is turned on may be determined
considering such an interaction as a perturbation. The
transition frequencies then becomev1 ,v2 after including
the perturbation, with zeroth-order eigenvectorsX1 ,X2 that
are, up to a normalization factor, due to the overlap of
~unperturbed! Kohn–Sham orbitals between the two mo
ecules,

X65
1

&
S XD

6XA
D . ~11!

The ~first-order! perturbed transition frequencies are then
Downloaded 04 Apr 2001 to 128.32.113.135. Redistribution subjec
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~XD
T ,6XA

T!S ADD ADA

AAD AAA
D S XD

6XA
D

~XD
T ,6XA

T!S I SDA

SAD I D S XD

6XA
D . ~12!

The energy transfer coupling~half of the energy splitting! is
therefore obtained to first order as

JDA
0 @[ 1

2~v12v2!#5XD
T ADAXA2v0XD

T SDAXA . ~13!

The first term in Eq.~13!, according to Eq.~3!, contains
only terms involving the coupling matrixK that couples tran-
sitions inD to those inA:

Kiaa, jbb5E drE dr 8f ia*
D~r !faa

D ~r !

3S 1

ur2r 8u
1gXC~r,r 8,v! Df j b

A ~r 8!fbb*
A~r 8!,

~14!

where$f ia
D(A)% are the Kohn–Sham molecular orbitals ofD

~or A! and gXC(r,r 8,v) is the Fourier transform of
gXC(r ,t;r 8,t8) defined in Eq.~6!. Contracting the matrix
ADA with vectorXM ~X andY of systemM!, we can rewrite
the terms in Eq.~13! using ~diagonal! transition densities
@rM

T (r ),M5D,A#. Such transition densities are linear com
binations of products of molecular orbitalsf ia*

M(r )faa
M (r ),

with the coefficients given by the vectorXM ~X andY vectors
of systemM!. Transition densities are in general one partic
density matrices that should be denoted asr̃M

T (r,r 8). We use
the term ‘‘transition densities’’ in the present work to deno
the diagonal element of the one particle transition den
matricesrM

T (r )[r̃M
T (r,r ). The energy transfer coupling in

vacuum is therefore

JDA
0 5E drE dr 8rD

T* ~r !

3S 1

ur2r 8u
1gXC~r,r 8,v0! D rA

T~r 8!

2v0E drrD
T* ~r !rA

T~r !. ~15!

Equation~15! is a density functional version of the energ
transfer coupling expression, which is usually derived fro
the configuration interaction with single substitution~CIS!
wave functions, based on a Hartree–Fock~HF! ground state
result.26 To make a comparison, the first term on the righ
hand side~rhs! of Eq. ~15! is divided into two contributions:
the integration term with 1/ur2r 8u is the Coulomb interac-
tion, while the other term withgXC arises from theexchange-
correlationeffect between the transition density ofD andA.
The former resembles the Fo¨rster coupling mechanism if the
dipole approximation is used for the transition densities, a
the latter is similar to the Dexter exchange mechanism,
cept that the correlation of the electrons is now effectiv
included by the exchange-correlation kernel. Such corre
tion effects on EET are not available from the HF-CIS a
proach. In addition, the second term of Eq.~15! shows how
the orbital overlap of the two molecules contrib
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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3068 J. Chem. Phys., Vol. 114, No. 7, 15 February 2001 Hsu et al.
utes to the energy transfer coupling. This overlap contri
tion to the EET coupling has exponential distance dep
dence and has been suggested to be a more impo
contribution than exchange coupling.27

IV. EXCITATION ENERGY TRANSFER IN A
CONDENSED MEDIUM

We next consider the effect of a condensed medium
energy transfer coupling between two solute molecules.
rewrite Eq.~10! with additional solvent transitions, treatin
D and A as the systemS, and calling the surrounding me
dium bath,B.

S ASS ASB

ABS ABB
D S XS

XB
D5vS IS O

O IB
D S XS

XB
D , ~16!

whereO is a zero rectangular matrix with appropriate dime
sions.

We ignore the effects caused by the overlap of
Kohn–Sham orbitals of the medium and the system in w
ing Eq. ~16!, and focus on the solvent influence on EE
coupling through the Coulomb and exchange-correlation
teractions between the solvent and the medium. Equa
~16! can be transformed into an effective equation for
system dimensions only by the standard partit
technique.28 The effective equation for the system transitio
is

@ASS1ASB~vIB2ABB!21ABS#XS5vISXS . ~17!

The transition frequency of the solute molecules is usu
far removed from those of the solvent in cases where
absorption of the system can be observed and assigned
inversion of the matrixvIB2ABB should therefore exist an
be well defined for virtually all applicable cases. Equati
~17! is then an effective equation to solve for the excitati
energies of a solvated system. The major result in the pre
work is obtained, as described below, by realizing that
term (vIB2ABB)21 in Eq. ~17! is actually the charge den
sity response function of the bath,xB(r,r 8,v), in its matrix
representation, according to Eq.~2!. We can substitute this
quantity by the bulk susceptibility function of the solvent, f
purposes of calculation, in applications in which the mole
lar details of the surrounding environment are not importa

The energy transfer coupling in the presence of the
vent is

JDA5XD
T ADAXA2v0XD

T SDAXA

1XD
T ADB~vIB2ABB!21ABAXA . ~18!

We have included the contribution arising from the over
of the Kohn–Sham orbitals between the donor and accep
which can be obtained by replacingIS in Eq. ~17! as the
corresponding matrix in Eq.~10!:

IS[S I SDA

SAD I D . ~19!

The solvent modifies the coupling through all three terms
Eq. ~18!. The solvent modifies the electronic densities of t
two molecules in the first two terms of Eq.~18!, leading to a
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change in the EET coupling which consists of Coulom
exchange-correlation, and overlap terms, as discussed ab
One can perform the electronic structure calculation with
model Hamiltonian for the solvent to account for such
effect. We have proposed such a model in earlier work,29,30

and there are a number of similar approaches discussed i
literature~see, e.g., Refs. 31–33!. We focus on the contribu-
tion arising from the third term in Eq.~18! in the present
work. This term is an additional contribution, with no corr
sponding term for the coupling in vacuum. Let us call t
third term of Eq.~18! JDA

(m) and, for purposes of discussion
regard it as the solvent modification term.

JDA
~m![XD

T ADB~vIB2ABB!21ABAXA . ~20!

Therefore, in terms of transition densities, the above exp
sion for coupling becomes

JDA
~m!5E drE dr 8E dr 9E dr-rD

T* ~r !

3S 1

ur2r 8u
1gXC~r,r 8! D

3F(
B

rB
T~r 8!

1

v2vB
rB

T* ~r 9!G
3S 1

ur 92r-u
1gXC~r 9,r-! D rA

T~r-!rA
T~r-!

5E drE dr 8E dr 9E dr-rD
T* ~r !

3S 1

ur2r 8u
1gXC~r ,r 8! DxB* ~r 8,r 9,v!

3S 1

ur 92r-u
1gXC~r 9,r-! D rA

T~r-!, ~21!

wherexB(r 8,r 9,v) is exactly the density–density respon
function for the bath. The density–density response funct
describes the first-order response of the charge density o
bath~at r 8) when a time-dependent external perturbation~os-
cillating at the solute transition frequencyv! is applied~at
r 9). Macroscopically, this response function for a conden
medium can be described exactly by the dielectric respo
Such an approach is similar to continuum models for s
vents in electronic structure calculations~see Refs. 29–34
for example!. The functional form of the dielectric suscept
bility is known for many cases and numerical solutions a
available for general situations.34–37

Equation ~21! can be viewed as an expression of t
transition density of the donor,rD

T (r ), and the operator
1/ur2r 8u1gXC(r ,r 8), creating an electric potential as an e
ternal perturbation for the solvent,B. Further, the density
response arising from the solvent, due to the perturbation
then coupled with the transition density of the accept
(rA

T), to yield a modification in the donor–acceptor couplin
This result is similar to two real charge distributions inte
acting with each other in the presence of a solvent. Thus
have now transformed the problem into a more familiar si
ation in which the transition densities interact with the s
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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vent through the Coulomb and exchange-correlation po
tials. However, instead of using the static response prope
of the solvent, the optical dielectric response at the transi
frequency is used. To the best of our knowledge, this is
first time such a general isomorphism between EET coup
and interaction between real charge densities has been e
lished without explicitly using oscillating charges or dipol
for the transition, and without the limitation of a particul
geometry.

The results in Eq.~21! can be divided into four contri-
butions as a result of the two interaction kernels~Coulomb or
exchange-correlation! coupling the medium and donor or a
ceptor. Coulomb coupling is much larger than exchan
correlation couplings in many cases7,8,27~for example! and is
an important feature of the reaction field models we ha
developed in Refs. 29 and 30. The term with the Coulom
Coulomb kernel is thus expected to be the most impor
among the four contributions:

JDA
~m!~Coul!5E drE dr 8E dr 9E dr-rD

T* ~r !
1

ur2r 8u

3F(
B

rB
T~r 8!

1

v2vB
rB

T* ~r 9!G
3

1

ur 92r-u
rA

T~r-!. ~22!

We present two illustrative examples below in order to f
ther understand the physical implication of our result. W
solve for the Coulomb coupling and the Coulomb–Coulo
contribution @Eq. ~22!# in medium modified EET coupling
for each example.

A. Two molecules separated by solvent

Let us first consider the situation where the donor a
acceptor are embedded in and separated by solvent
ecules. Each chromophore has created a cavity in the
continuum of solvent. For simplicity, spherical cavities a
assumed. The response of a dielectric medium can be
tained by solving for the reaction field,F rxn(r ), arising from
the multipoles (qlm

D ) of the transition density of the
donor:38–40

F rxn~r ;r .a!52(
l 50

`

(
m52 l

1 l
4p

2l 11

~ l 11!@e~v!21#

e~v!l 1e~v!1 l

3qlm
D r 2~ l 11!Ylm~u,f!, ~23!

wherea denotes the radius of the spherical cavity, and
multipole momentqlm

D is defined as39

qlm
D 5E Ylm* ~u,f!r 8 lrD

T ~r !dr , ~24!
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and e~v! is the dielectric response of the solvent at the f
quency of transition~v!. The solvent modification to the
Coulomb coupling is

JDA
~m!~Coul!5E drrA

T~r !F rxn~r !

52(
l 50

`

(
m52 l

11
4p

2l 11

~ l 11!~e~v!21!

e~v!l 1e~v!1 l
qlm

D

3E
r .a

drrA
T~r !r 2~ l 11!Ylm~u,f!. ~25!

The direct Coulomb coupling~in vacuum! between
rD

T (r ) and rA
T(r ) is, using the same multipole expansio

technique,

JDA
0 ~Coul!5(

l 50

`

(
m52 l

11
4p

2l 11
qlm

D

3E drrA
T~r !r 2~ l 11!Ylm~u,f!. ~26!

Comparing expressions in Eqs.~25! and ~26!, and as-
suming that transition densitiesrD(A)

T are not affected by the
solvent, we find that the different integration regions in the
equations do not make a significant difference since we fo
on the case where the donor and acceptor molecules
separated by some solvent. In this case

JDA
total~Coul!5JDA

0 ~Coul!1JDA
~m!~Coul!. ~27!

So for eachl, there is a reduction~negative! factor of (l
11)@e(v)21#/@e(v) l 1e(v)1 l # multiplying to the corre-
sponding terms in the summation for the solvent modifi
tion component (JDA

(m)) of the coupling, reducing the magn
tude of the overall coupling in the medium. The screen
factor for the final coupling strengths ranges in general fr
3/@2e(v)11# for l 51 to 2/@e(v)11# as l approaches in-
finity. ~For transition densities there is no monopole.! For a
solvent with e(v)52, for example, such a factor range
from 3/5(l 51) to 2/3(l→`). In comparison, the Fo¨rster ex-
pression carries a factor of 1/n2@51/e(v)# to account for the
medium screening effect, which is 1/2 in this case. T
rather simple screening factor of 1/n2 not only overestimates
the effect of a dielectric medium, but it is also not consiste
in its formulation, since the proper dielectric screening o
dipole source is usually written as 3/@2e(v)11# instead of
1/e~v!.

B. Two molecules in a cavity

We now consider a second example, the case where
two molecules are placed sufficiently close to each othe
the medium such that the cavities created by the two m
ecules are merged into a single cavity.

A charge–charge response functionx(r ,r 8,v) can gen-
erally be obtained from dielectric solvation theory.41 The
dipole–dipole response function has been studied ex
sively in Refs. 42 and 43, for example for solvents compo
of neutral species, and a general solution for a spherical c
ity in a dielectric continuum medium is available.35,44 The
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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interaction energy between two charges,q1 andq2 , located
at r1 andr2 inside a spherical cavity is, according to Refs.
and 44,

Eint5
q1q2

ur12r2u
1q1q2f ~r1 ,r2!, ~28!

where

f ~r1 ,r2!52(
l 50

`

(
m52 l

l
4p

2l 11

~e21!~ l 11!

~ l 11!e1 l

r 1
l r 2

l

a2l 11

3Ylm* ~u1 ,f1!Ylm~u2 ,f2!; ~29!

a in Eq. ~29! denotes the radius of the cavity,e is the dielec-
tric constant of the medium, and the origin of the coordina
is the center of the spherical cavity.

The solvent-mediated energy transfer coupling of t
chromophore is

JDA
~m!~Coul!5E drE dr 8rD

T ~r !rA
T~r 8! f ~r,r 8,v!, ~30!

wheref (r,r 8,v) is defined similarly as in Eq.~29! except the
dielectric constante is replaced by the dielectric response
the frequency of transitione~v!.

A simple model that provides some insight is a syst
with two transition dipoles inside a spherical cavity. Suppo
the two transition dipolesmD

T ,mA
T for the donor and accepto

are located atrD andrA , respectively. The expression in E
~30! is modified for interactions between two point dipole
and the solvent modification component is

JDA
~m!~Coul!5mD

T ¹D¹Af ~rD ,rA ,v!mA
T . ~31!

The interaction between the two dipoles in vacuum, for co
parison, is~assuming the transition dipole moments are
changed significantly by solvation, for simplicity!

JDA
0 ~Coul!5mD

T ¹D¹A

1

urD2rAu
mA

T , ~32!

where¹D ~or ¹A) is the gradient operator forrD (rA). We
have assumed that the transition dipoles are the same fo
molecules in vacuum as in solution so that Eq.~27! is appli-
cable. The tensor¹D¹Af (rD ,rA ,v) in Eq. ~31! can be cal-
culated using Eq.~29! in spherical coordinates. Similarly, th
Coulomb potential 1/urD2rAu can be expanded in spheric
coordinates:

1

urD2rAu
5(

l 50

`

(
m52 l

l
4p

2l 11

r ,
l

r .
l 11 Ylm* ~uD ,fD!

3Ylm~uA ,fA!. ~33!

Let us assume, without a loss of generality, thatr D.r A .
~For the case wherer D,r A we can simply switch the dono
and acceptor in the discussion below.! We first note that for
the two functions listed above in Eqs.~29! and ~33!, all of
the the angular dependence and the radial dependence fr A

(r ,) are the same but forr D (r .) the dependence has th
opposite slope. So if the transition dipole of the donor~or the
one that is closer to the cavity boundary!, mD

T , is parallel to
the radial direction, then the dielectric medium modifies
Coulomb coupling by adding a term of thesamesign to the
Downloaded 04 Apr 2001 to 128.32.113.135. Redistribution subjec
s
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e
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-
t
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e

direct couplingJDA
0 , enhancingthe overall coupling strength

On the other hand, ifmD
T lies parallel to the boundary sur

face, the modification has the opposite sign,screeningdown
the Coulomb coupling strength.

Using Eqs.~31! and ~32!, we can calculate the ratio o
interaction energies in a dielectric medium to that in vacuu
We illustrate this ratio with a pair of dipoles of the sam
magnitude located at distances 0.8a and 0.1a from the center
of a spherical cavity, respectively, oriented either in the sa
or opposite directions. Sketches of the models employed
plotted in Fig. 1.

A simple model calculation indicates that coupling in
medium is not always a screened Coulomb coupling,
shown in Fig. 2. We can explain the trends in Fig. 2 usi
the image charge approximation.44 Replacing the source di
pole with two closely spaced point charges, one realizes
the image dipole moment generated by a source dipole i
the same direction if the source dipole is perpendicular to
boundary surface, and the overall interaction of the system
enhanced. On the other hand, if the source dipole lies par
lel to the surface, the image dipole is then in the oppos
direction, reducing the interaction of the source dipole w

FIG. 1. Sketch for the models used in obtaining results plotted in Fig. 2.
two point dipoles are located at~20.8,0,0! and ~0.1,0,0! in Cartesian coor-
dinates and the radius of the cavity is set to unity. The dipole moments
of the same magnitude. For case I, the dipole moments are pointing a
the x axis. For case II, the dipoles are pointing along thez axis, in the
opposite direction.

FIG. 2. Ratio of the overall Coulomb coupling (J01J(m)) in the medium to
the Coulomb coupling in vacuum (J0) for two fixed transition dipoles as a
function of the dielectric constant. The Coulomb couplings are calcula
using Eqs.~31! and~32!. The two cases presented are for the dipole arran
ments shown in Fig. 1. The solid line connecting the dots represents re
for case I, while the dotted line with triangles is for case II.
t to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



al
o

pe
m

ith

c

ge
le

ica
b
r
hi
ec
o
ed
th

ul
tio
in
th
fre
y.

th
it

ie
t
an
-
o

s
o-
c
-

tio
e

g
ap
o
il

g
e
,
e
.

in
t

o.
bey
as
sic
.S.
3-

d R.

-

C.

3071J. Chem. Phys., Vol. 114, No. 7, 15 February 2001 Excitation energy transfer
other charges in the system. The same effect has been c
lated and observed for planar dielectric interfaces by Ch19

and by Cho and Silbey.17,18 We believe that this
enhancement/suppression effect can be examined in ex
ments and may explain the excellent agreement of so
quantum chemistry calculations to experimental results w
out considering the effects of the medium,7,8,45,46perhaps due
to cancellation of enhancement and suppression effects
ated by different parts of the chromophores.

We note that one may want to simulate an inhomo
neous solvent environment. A protein matrix, for examp
may be considered by using a model with a larger opt
dielectric response in the region where more polariza
groups reside. Equation~21! is capable of accounting fo
such effects in numerical calculations. An example of t
type of approach can be found in Ref. 47, in which the sp
tral density for solvation is calculated as a function
frequency.35 In the calculation several models are employ
using different assumptions on the dielectric response of
protein and the water, with boundaries defined as molec
shaped cavities surrounding the chromophore. A calcula
for the medium effect with the Coulomb–Coulomb term
Eq. ~21! can be performed in the same way except that in
case we only need to calculate the interaction for one
quency~v!, which is the frequency of the excitation energ

V. CONCLUSION

We have derived a general approach for the effect of
medium on EET coupling using time-dependent dens
functional theory as shown in Eq.~21!. This result is isomor-
phic to the interaction of two groups of electronic densit
under the influence of a condensed medium except tha
EET the transition densities for the donor and acceptor
the dynamic response function~at the frequency of the tran
sition! of the medium are used. Our result does not rely
the multipole expansion of the transition densities, nor i
limited by a specific boundary condition. Therefore it pr
vides a basis for future detailed investigations on the effe
of the surrounding environment~both homogeneous and in
homogeneous media! on EET.

For specific applications, the exchange and correla
effects on the direct coupling and the influence of the m
dium can be calculated using approximate exchan
correlation functionals. A unique consequence of our
proach using density functional theory is the inclusion
correlation effects on the EET coupling, which are unava
able in HF-CIS theory.26,27

A simple model calculation of Coulombic couplin
shows that the medium modification of EET coupling d
pends on the geometry and the arrangement of the donor
acceptor, and the medium. The overall coupling may be
hanced or supressed by the coupling strength in vacuum
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8A. Damjanović, T. Ritz, and K. Shulten, Phys. Rev. E59, 3293~1999!.
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